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Abstract 

We did cool stuff to reduce the number of IvPs and 
BVPs needed to schedule SOFIA by restricting the 
problem. The restriction costs us little in terms of the 
value of the flight plans we can build. The restriction 
allowed us to reformulate part of the search problem 
as a zero-finding problem. The result is a simplified 
planning model and significant savings in computation 
time. 

Introduction 
The Stratospheric Observatory for Infrared Astronomy 
(SOFIA) is NASA’s next generation airborne astronom- 
ical observatory. The facility consists of a 747-SP mod- 
ified to accommodate a 2.5 meter telescope. SOFIA is 
expected to fly an average of 140 science flights/year 
over it’s 20 year life time. The SOFIA telescope is 
mounted aft of the wings on the port side of the aircraft 
and is articulated through a range of 20 to 60 degrees 
of elevation. The telescope has no lateral flexibility; 
thus, the aircraft must turn constantly to  maintain the 
telescope’s focus on an object during observations. A 
significant problem in future SOFIA operations is that 
of scheduling Facility Instrument (FI) flights in sup  
port of the SOFIA General Investigator (GI) program. 
GIs are expected to propose small numbers of observa- 
tions, and many observations must be grouped together 
to make up single flights. Approximately 70 GI flight 
per year are expected, with 5-15 observations per flight. 
The scope of the flight planning problem for support- 
ing GI observations with the anticipated flight rate for 
SOFIA makes the manual approach for flight planning 
daunting. 

Automated flight planning for SOFIA involves se- 
lecting observations to perform and scheduling these 
observations. These discrete choices are constrained 
by complex continuous constraints. Verifying that the 
constraints are satisfied involves solving both Initial 
Value problems (IVPs) and Boundary Value Problems 
(BVPs) to find the aircraft’s ground track, determine 
aircraft fuel consumption, and check that observations 
stay within proscribed elevation limits. A sampling 
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based ‘approach called Forwardplanner (FK03) works 
well for a simple SOFIA model, but is too costly for a 
higher fidelity model. The main reason for this is the 
high cost of solving many IVPs and BVPs in the higher 
fidelity model. A set of well-founded assumptions al- 
lowed us to reformulate the model and eliminate a large 
number of calls to solve the IVPs and BVPs; while this 
reformulation actually reduces the search space, empir- 
ica! results show thzt the resu!ting algorithm produces 
high quality flight plans at a fraction of the computa- 
tional effort. 

The rest of the paper is organized as follows. We 
first describe the high fidelity SOFIA model. We then 
re-examine the Forwardplanner algorithm and describe 
a principal source of the increased computational costs 
of flight planning. We then describe a way of migrat- 
ing some of the search into the underlying constraint 
reasoning component by means of some well-founded 
assumptions. This allows us to eliminate a potentially 
large number of expensive ground track construction 
steps without sacrificing the ability to construct good 
flight plans. We perform several experiments to vali- 
date the approach. Finally, we discuss the implications 
of our reformulation of the computational search on the 
planning model. 

Improving Model Fidelity 
The SFPP (Single Flight Planning Problem) consists 
of a number of observation requests, a flight day, and a 
takeoff and landing airport. The objective is to find a 
flight plan that maximizes the summed priority of the 
observations performed while obeying the constraints 
governing legal flights. We also presented Forward- 
Planner, a progression style planner using a cornbina- 
tion of lookahead and heuristics to solve the resulting 
SFPP. The aircraft activities are take-off, land, Bight- 
leg and dead-leg. Flight-legs require tracking an object 
and obeying visibility constraints, while dead-legs can 
be used to reposition the aircraft to enable flight-legs, 
and only consume time and fuel. 

Insert formal description of math here. Trying 
to do this with my present formulation is awful! 
What I’d really like is the heading as a function 
of time (with initial position and object coords 
as constants), same for elevation. Uncertain if 
Cartesian formulation better or worse? 
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We summarize the relevant constraints on the prob- 
lem, originally described in (FK03). As before, we 
use the astronomical conventions established in Meuss 
(Mee91). The constraints on object elevation are as fol- 
lows. Suppose that @i is the initial latitude, Li is the 
initial longitude, 8i is the (Sidereal) time at which the 
leg begins, Of is the time at which the leg terminates, 
6 is the observation declination, (Y is the observation 
Right Ascension, bi is leg heading at the start of the 
leg, bf is the heading at the end of the leg, h is the 
object elevation (as a function of object coordinates, 
position and time), Af is the object azimuth at the end 
of the leg (again, a function of object coordinates, po- 
sition and time), and d is the flight distance. Assume 
that the Earth is a perfect sphere, and that the aircraft 
flies a Great Circle segment. The end position of the 
aircraft after the leg is given by: check these equa- 
tions, reverse engineered from sphtr 

7T 7T 
q5f = sin-' [sin(q5i) sin(; - d )  + cos(q5i) cos(; - d )  cos(bi)] 

sin(bi) COS( i - d )  cos(&) 
sin($ - d )  - sin(q$) sin(4f) 

Lf = ~i + tan-' 

The object elevation is given by: 

H E 8 f  - L f  - a  (3) 

sin h = sin(q5p) sin(b) + cos(4f) cos(6) cos(H) (4) 
The object azimuth is given by: 

(5) 
sin(H) 

cos(H) sin $f - tan(6) cos(8f) 
tanAf = 

Finally, the aircraft heading is given by: 

sin(bi) cos( 5 - d )  
sin(q5i) - sin(; - d )  sin(q5f) 

bf = tan-' 

Here's the nonlinear DES form of this; Carte- 
sian formulation better, bu t  above equations 
more intuitive for defining the zero-finding prob- 
lems. 

Since the telescope has no lateral flexibility, the air- 
craft's ground track is constrained by the requirement 
to track the object. The telescope points out the left 
hand side of the aircraft, so the constraint is bf +270" = 
Af. In addition, the telescope elevation h is limited to 
between 20' and 60". Both of these conditions must 
hold throughout the observation. The former actually 
constrains the ground track, leading to a system of dif- 
ferential equations defining the ground track. The lat- 
ter constraint is a condition on the elevation that must 
be satisfied. We write the equations of motion for the 
aircraft assuming a spherical Earth of radius a and con- 
stant ground speed V.  If we interpret A and h as func- 
tions of (ultimately) time, we can then write a system 
of differential equations as follows: 

--L(6) d = - V . sin(A(8) - r )  
d8 a cos $(e) 

(7 )  

By virtue of simple physical intuition, there is a 
unique solution to these equations; that is, there is only 
one ground track the aircraft could follow in order to 
track an object of known and fixed cy and 6 beginning 
at a known initial position and initial time. We can 
rewrite the elevation equations as a function of time: 

sin h(8) = sin(qj(8)) sin(b)+cos(#(8)) cos(&) cos(O-L(O)-a) 

Similarly, we know from physical intuition that the 
change of elevation described by this function is con- 
tinuous and differentiable with respect to time. That 
is, the elevation equation is constrained by the function 
governing the aircraft's position, which we similarly ar- 
gued was well behaved. Thus, we can compute $ and, 
armed with the functions +(e) and L(B), find the solu- 
tions to = 0. 

The set of constraints considered in the previous pa- 
per comprise a simplified version of the problem. In 
particular, the following factors were ignored: 

0 The impact of the true fuel consumption model of 
the aircraft on the flight time. Previously, we sim- 
ply used a maximum flight duration as an analog of 
fuel consumption. The fuel consumption is actually 
a function of aircraft weight, Mach number, change 
in altitude, and outside temperature. Since flying re- 
duces aircraft weight, the flight duration constraint 
in the old model is replaced by a partial differential 
equation that governs the fuel consumption. 

0 The impact of the Earth's shape on the ground track. 
The Earth is actually an oblate spheroid whose polar 
diameter and equatorial diameter are not the same. 
This has a reasonable impact on the actual ground 
track, and accounting for this invalidates the differ- 
ential equations in the previous model that constrain 
the ground track. 
The impact of winds on the ground track. As the 
aircraft flies, the wind direction and velocity changes 
the ground speed. This irmiiidates the assumption in 
the old model that the ground speed is constant. 

In addition, we previously Euler's method (Fer81) 
to solve the (simplified) aircraft dynamics equations; 
while fast when assuming a spherical Earth, it is prone 
to error, and harder to use without the spherical Earth 
approximation and deviation due to winds. These con- 
straints are solved using 5th-order Runge-Kutta approx- 
imation (Fer81) which calculates ground track se,gnents 
on the surface of the Earth; this approach constructs 
only as many Great Circle segments as necessary to 
keep the error within a fixed tolerance. Mike, this is 
probably wrong: help fix this. A gridded wind and 
temperature model is available to correct the ground 

(9) 
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track in the face of winds and provide temperature data 
for calculating fuel consumption. In addition, an air- 
craft performance model from Boeing is used to com- 
pute the exact h! consumption fox each of the 747-SP’s 
engines, providing a much better estimate of flight time 
and correct fuel consumption. Additional features in- 
clude the ability to track non-stellar objects such as the 
sun, moon, planets in the solar system, and comets, as 
well as corrections for the required aircraft heading due 
to aircraft pitch. 

Unfortunately, the costs of solving these new con- 
straints and the higher accuracy of the flight dynamics 
constraints lead to a serious degradation in computa- 
tional efficiency. Using the new reasoning system, the 
Forwardplanner algorithm takes roughly 300 times as 
long to build a flight plan than it does using the simpler 
constraints and constraint reasoning system. 

Explaining The Performance Hit 
Our investigation into the Forwardplanner algorithm 
revealed that we spend a considerable amount of time 
deciding which observations are feasible at any point in 
the planning process before ev&mticg them. An ob- 
servation o is feasible at time t and position p if there 
is a dead-leg of possibly zero duration that ensures that 
the observation is within the ele$ation limits at t’,p’, 
the observation stays within the elevation limits for the 
required duration of the observation, and the aircraft 
can fly to the landing airport after the observation is 
finished. If the observation is not visible at t , p ,  For- 
wardplanner performs a search for the shortest dead-leg 
that makes the object visible for a flight leg of the re- 
quired duration, and still allows the aircraft to fly home 
after the observation is finished. This search is done by 
first changing the latitude of the aircraft to make the 
object visible, then performing a brute force search to 
reduce the dead-leg duration. If the resulting dead-leg 
exceeds a bound D the observation is considered in- 
feasible. Each flight-leg and dead-leg construction step 
requires solving an IVP, while each check to ensure the 
aircraft can flight to the landing airport requires solving 
a BVP. 

get data on how many dead-leg search steps 
are usually performed In the worst case, this re- 
quires Forwardplanner to solve a very large number of 
IVPs and BVPs. This is true even though the dead-leg 
duration is limited, as are the heading choices for the 
enabling dead-leg. It is also worth noting that the dis- 
cretization of dead-leg headings and durations in For- 
wardplanner is primarily for computational efficiency, 
and can result in missing some dead-legs that enable ob- 
servations. With the increased computational expense 
of each leg construction step, it is important to reduce 
the number of leg construction steps as much as possi- 
ble. At the same time, we would like to eliminate the 
discretization of dead-leg parameters. We focus on this 
throughout the rest of the paper. 

Before moving on, there are a number of points worth 
making. First, the shortest dead-leg making the object 
visible immediately after the dead-leg may not make 

the object visible for long enough. Suppose the aircraft 
is at high latitude. It is possible to fly West towards an 
object that is setting and make this object appear to 
rise. Observing the object will require flying perpendic- 
ular to the object, thus making it appear to set again. 
It is easy to construct a case where the aircraft may 
need to fly a longer dead-leg to enable an observation 
of the right duration. Such an object would have to 
be valuable to justify adding it to the flight plan; how- 
ever, recent studies indicate that such Northerly flights 
are likely to  be common, so this is a case worth bear- 
ing in mind. Similarly, the shortest dead-leg making 
the object visible for long enough may not enable the 
aircraft to fly home after the observation is completed. 
However, this only happens if the flight is almost fin- 
ished. Thus, failing to establish this condition may lead 
to missing only one observation; the likelihood that this 
observation is critical to making the flight a good one 
is low, and is not as important a consideration as the 
previous issue. 

Handling the Higher Fidelity Model 
In this section we describe how to change the solution 
methodology to reduce the cost of finding plans with- 
out sacrificing performance. First we describe a modi- 
fication to the Forwardplanner that restricts the set of 
plans that can be built, and show empirically that this 
leads to an increase in speed without sacrificing per- 
formance. We then show how to leverage this change 
to get an even larger increase in speed, again without 
sacrificing performance. 

Restricting the Set of Plans 
The feasibility check may requires a large number of 
expensive BVP checks to ensure that the aircraft can 
return to the landing airport. If the shortest dead-leg 

. enabling. an observation makes it impossible to return 
home, we consider lengthening the dead leg in the hopes 
that the resulting flight leg will carry the aircraft closer 
to the landing airport. This is not as counter intuitive 
as it seems, due to the complexities of the ground track. 
However, it may be a waste of time, since the aircraft 
will trivially be in range of the airport for at least half 
the flight 

We can restrict the feasibility check in the following 
way: first, we find the shortest dead leg that enables 
the observation for the desired duration. If the aircr2k 
can return to  the landing airport after completing both 
this dead-leg and the observation, then the observation 
is feasible, otherwise it is not feasible. It might be pos- 
sible to find a longer dead-leg that allows the aircraft to 
return to the landing airport, thus using this policy will 
exclude some flight plans. However, these will generally 
be confined to the latter half of the flight; furthermore, 
we expect a performance degradation only when high 
priority observations are excluded. 

figure showing this works goes here 

‘SOFIA’S nominal operation has the aircraft take off and 
land at the same,airport; this assumption only holds in such 
cases. 
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beef this up a little Once we have committed to 
this policy, we can introduce another performance en- 
hancement. Forwardplanner requires collecting all of 
thp feasible observations, heuristically ranking them, 
and subsequently selecting one to add the flight plan. 
This requires solving all of the BVPs up-front. How- 
ever, we can postpone the solution of the BVPs until 
after deciding to add an observation to the fiight plan. 
If the observation chosen to extend a flight plan fails to 
satisfy the requirement, then it is discarded and another 
extension is chosen. This requires caching *he enabling 
dead-leg with the observations in order to avoid search- 
ing for them again, and also requires re-normalizing the 
distribution and re-sampling. However, the probability 
of choosing any feasible extension of the flight plan is 
unchanged, and the expected number of BVPs to solve 
is reduced when most of the extensions are feasible and 
annecdotally this is the case; validate this with 
Elif. 

figure showing this works goes here? 

Changing the Division of Labor 
We have shown how to reduce the number of BVPs 
that must be solved to produce good flight plans. How- 
ever, even with this improvement, brute force search 
is still required to find the shortest dead-leg that en- 
ables the observation. In this section, we show how to 
eliminate the brute-force search. We take advantage 
of the new restricted feasibility condition by defining 
a function whose zeros correspond to the properties of 
an approximation to the shortest dead-leg enabling the 
observation. This defines a sub-problem that can be 
efficiently solved by using zero-finding algorithms such 
as Newton’s Method. Because the resulting formula- 
tion allows us to search the full continuous space of 
dead-legs, this is an improvement over the discretized 
brute-force search done in the previous version cf For- 
wardplanner. 

Replacing Search With Zero Finding 
Using the restricted conditions on object feasibility, the 
dead-leg construction phase of the feasibility check re- 
quires finding the heading and duration of the shortest 
dead-leg that enables the observation for a sufficient 
amount of time. Most often, this occurs because an 
object is not initially within the elevation limits. How- 
ever, sometimes it occurs because an object violates the 
elevation limits during the flight-leg, even when it is ini- 
tially visible. 

figure needed? Let us consider the feasible region 
of an observation 0. This region is the set of positions 
on the Earth from which the observation is visible, and 
is the annulus defined by two circles centered at the 
nadir position of o whose radii are the coelevation lim- 
its of the telescope (in SOFIA’S case, the radii of these 
circles are 30 and 70 degrees of arc). Let us now con- 
sider the properties of the shortest dead-leg in terms 
of the feasible region. Initially the aircraft is outside 
the feasible region. We want the aircraft to be in the 
feasible region after completing the dead-leg. Now, the 

shortest leg would put the aircraft on the boundary of 
the feasible region, as opposed to anywhere strictly in- 
side it. This corresponds to a condition that the object 
elevation being at one of the two extremes. If the air- 
craft begins inside the inner circle of the annulus, then 
we want the object to be precisely at the the upper 
telescope elevation limit, while if it is outside the outer 
circle, we want the object to be at the lower telescope 
elevation limit. 

If the object was fixed relative to the ground, we 
could simply fly directly towards the object, since this 
maximizes the rate of change of the object elevation. 
However, as we mentioned, the object appears to move 
across the Earth as the Earth rotates. We could fly a 
dead-leg that tracks the object as it moves, but that 
would not minimize the flight distance. We know that 
a Great Circle arc minimizes the flight distance, but 
what Great Circle arc should we follow? We use the 
following intuition: we fly a Great Circle arc that ends 
with the aircraft flying directly towards the object to be 
observed. Intuitively, this is the correct policy when the 
object is nearly in view, or near the end of longer dead- 
legs. Observatory policy will normally prevent dead- 
legs longer than a few tens of minutes, so this intuition 
will likely produce very short, if not ”locally optimal” 
dead-legs. 

Thus, we have the following problem: find b,, d such 
that Fl(b,,d) =< f1(b,,d),f2(b2,d) >=< 0,O > where 
fl(b,, d )  = bf  - A f  is the difference between the object 
azimuth and the final heading of the aircraft after flying 
the dead-leg defined by b,, d, and f2(b,, d) = e - h is the 
difference between the final object elevation and the 
telescope elevation limit e closest to the initial object 
elevation. Equations 1 to 6 show how to compute all of 
the quantities needed to define F1. 

Now let us consider the case where the object vi- 
olates the elevation limits at some point during the 
observation, regardless of whether or not it is initially 
visible. Using the geometric interpretation of the fea- 
sible region again, we see that the flight track exits 
the annulus (and possible re-enters it later on). In 
this case, we can set up a function very similar to 
that we used when the observation was initially out- 
side the feasible region. We now want to find b,, d such 
that F2(b,,d) =< fl(b,,d),fS(b,,d) >=< 0,O >, where 
f3(h,  d) is the difference between the extreme object el- 
evation achieved during the flight-leg and the telescope 
elevation limit violated during the observation. The 
intuition behind this is that the dead-leg we wish to 
fly should just barely nudge the observation inside the 
feasible region. f1 remains the same. Unlike the pre- 
vious case, where we only needed to compute quanti- 
ties like position and object elevation at fixed times, 
we now must find either the minimum or maximum of 
the elevation over the course of the flight-leg. If the 
extreme elevation occurs at either the beginning or end 
of the flight leg, this only requires evaluating Equation 
4. Otherwise, it requires a more expensive function OP- 
timization step Mike, what algorithm used to do 
this? how expensive in practice? 



In both cases, we have now reduced the problem of 
finding the shortest dead-leg to the problem of finding a 
zero of a function, which can be solved efficiently using 
s vxiety of methods as !ong as satisfies some simple 
conditions ??. If an object is not initially visible, we de- 
termine whether to zero F1 or F2 using Elif will fill in 
details. In some cases, we simply don’t bother looking 
for a dead-leg since we are certain not to find one; these 
are cases where the extreme elevation is out of bounds 
and the rate of change of the elevation changes provide 
better description of this case, and explain why 
we don’t bother. Perhaps move this to another 
section? 

Properties of the dead-legs Let us now consider 
the zeros of the functions F1 and F2 and the dead-legs 
that are defined by them. We want to do this for two 
reasons. First, the behavior of zero-finding algorithms 
depends on how many zeros there are and how they are 
distributed. Second, the resulting dead-legs may not be 
feasible given other constraints on how the aircraft flies 
that are not present in the definition of the zero-finding 
problems. 

First of all; we observe that there are an infinite num- 
ber of zeros of both F1 and F2. This is because we have 
imposed no restriction on b, and d. In particular, we 
can always find a sequence of increasingly long dead- 
legs that bring the object to an extreme elevation limit. 
This does not pose a serious problem, because of the 
dead-leg duration restriction imposed by the Forward- 
Planner algorithm. However, it means that we might 
not find the shortest dead leg, and thereby incorrectly 
conclude that some observation is not feasible. 

Also, not all zeros correspond to  valid dead-legs. For 
example, a dead leg whose duration is negative is impos- 
sible for the aircraft to fly; similarly, a dead-leg whose 
duration exceeds the maximum allowed is forbidden. A 
more interesting example concerns limitations imposed 
by the minimum turn duration of the aircraft. A stan- 
dard rate turn for a 747 is 180 degrees in 2 minutes. If 
the heading change and duration of the dead-leg vic- 
late this constraint, then the minimum dead-leg is also 
impossible to achieve. 

Despite these drawbacks, we should point out that 
this method has two significant advantages over the 
brute force approach we used previously. First, we have 
imposed no limitations on the heading or durations of 
the dead-legs. Thus, we might find dead-legs we were 
unable to find before using this new method. Second, 
since zerc-finding algorithms are usually quite fast, we 
hope that employing such a method will dramatically 
speed up the feasibility check, and therefore the flight 
planning algorithm overall. 

-.. 

Finding dead-legs By Zeroing 
Newton’s Method and Ratio of 
Determinants Update 
Newton’s Method is our choice for finding the zeros of 
F1 and F2. It is simple to implement and very fast. 
Newton’s Method requires an initial guess for the zero; 

let this be denoted b1,dl with future iterates denoted 
b,,d, . For functions F of 2 inputs and 2 outputs, the 
method proceeds as follows: 
1. 

2. 

3. 

4. 

5. 
6. 

CGIXpiite F(5i, d i )  =< fi(bi, d i ) ,  f 2 ( b i ,  d i )  >=< 
f l , f 2  > 
Compute the Jacobian (matrix of partial derivatives): 

Compute the determinant of J : IJI = ps - qr. If 
this is smaller than t then set I JI = t (preserving the 
sign). 
Compute the ratio of determinants update: db = 

I J I  
Set bi+l = bi + db and di+l = di + dd 
If < bi+l , di+l >z< 0,O > or step limit reached, then 
halt, otherwise go to step 1. 

f29-flS and dd = LE$Z 

Computing Derivatives Numerically 
Directly calculating the derivatives of the functions Fl 
and F2 is impossible because of the gridded wind model 
that influences the ground track. Consequently, we 
use finite differencing to compute all of our deriva- 
tives numerically (GMW81). Of the available schemes, 
we chose forward differencing over centered differenc- 
ing because of the smaller number of function evalua- 
tions required. We use two step size parameters SI, s2 
in forward differencing. Suppose we are computing the 
derivative at b,, d,. Forward differencing for functions 
F of 2 inputs and 2 outputs, the method proceeds as 
follows: 
1. Compute F(b,,d,) =< f l ( b , ,  41, f2(b, ,  4 )  >=< 

2. Compute f i b  = f I ( b ,  + sl,d,) 
3. Compute f id  = fl(b,, d ,  + s2) 
4. Compute f 2 b  = f 2 ( b z  + S I ,  d,) 
5. Compute f 2 d  = f i (b , ,d ,  + s2) 

6.  Compute = flb-fl 

7. Compute = fld-fl s2 

8. Compute = fzb-fi 

9. Compute 2 = 

Note that more elaborate forms of numerical deriva- 
tive computations are available. One reason for avoid- 
ing them is the number of calls to compute Fl or F2, 
which in this case requires constructing either flight 
legs, dead-legs or both. Since we want to minimize 
this cost, for the time being we stick with the simple 
forward differencing scheme. 

Zeroing FI only requires solving 1 IVP to actually 
construct the flight-leg. Zeroing F2 requires solving two 
IVPs per step of Newton’s Method, and two function 
optimization steps to find the elevation extremes, PIUS 
one more at the end to construct the flight. Thus, we 
depend on performing only a small number of Newton 
steps to increase the speed. 

f l , f 2  > 

s1 

s1 
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The Initial Guess 
Still need some clarification on this section Algo- 
rithms like Newton’s Method are highly sensitive to the 
cioseness of the initial guess to the actual zero of the 
function. Since these algorithms typically follow gradi- 
ents towards local zeros, it is important to ensure that 
the initial guess is a good one. 

Guessing the initial dead-leg duration requires es- 
timating the difference in elevation that the dead-leg 
must achieve, and then estimating the rate of change of 
the elevation during the dead-leg. Guessing the initial 
heading requires determining how an object’s elevation 
is changing, and choosing the flight direction to make 
the elevation change correctly. 

This can’t be as complex as it appears ... Mike, 
Elif? Suppose we compute the ground track for a flight 
leg. We can then determine the extreme of the eleva- 
tion by estimating the form of Equation 9 and decide 
whether to zero Fl or Fz. We can also use Equation 
9 to approximate the rate of change of the elevation as 
a function of time; this is done by taking the deriva- 
tive of Equation 9 and evaluating it at the position and 
time at which the flight leg begins. We can also esti- 
mate the rate of change of the elevation as a function 
of the change in position, which requires estimating the 
derivatives of Equations 1 and 2 as a function of time 
at the current position and time as well. 

We attempted to improve convergence when zeroing 
Fz by first using Euler’s Method to construct the flight 
legs. Once a zero of Fz was found this way, we then used 
this as an initial guess and re-ran Newton’s Method 
using Runge-Kutta to construct the flight legs. This 
did not improve convergence and was more expensive, 
and so we do not consider this further. 

Matters of Convergence 
Newton’s Method depends on the function being zeroed 
to obey some properties to guarantee convergence. Our 
functions do not obey these properties all of the time, 
and so Newton’s Method occasionally fails to converge. 

First, there may be cases where the first derivative 
of F1 or F2 may be zero. This is problematic for zero- 
finding algorithms, since they mostly rely on the first 
derivative to provide the direction of the next move. 
Ask Mike if we have concrete evidence that this 
happens. 

Ask Mike for clarifying details o n  compact 
support  for newton. Newton’s Method requires that 
F is defined on every element of 72’. As we have seen 
above, this is not the case. F is not well defined for 
sufficiently short or long dead-leg durations. The prob- 
lem with long durations is due to the built-in nature 
of the fuel model, since fuel consumption and aircraft 
weight are so intertwined. Essentially, if a Newton step 
requires the aircraft to fly long enough that it would 
run out of fuel, we can’t evaluate the ground track of 
the flight-leg ’. The problem with short durations has 

2Curiously enough, the problem with negative durations 
does not exist with the simple flight dynamics constraints; 
these are solved using spherical triangles, and a negative 

been explained above. 
Finally, since we have only discrete approximations 

of the continuous functions that define the wind speed 
and direction, we know that F1 and FZ are not actually 
continuous and differentiable functions as implemented 
inside the constraint reasoning system. Thus, it is pos- 
sible that the zeros will be badly behaved because of 
this approximation as well. 

These factors mean that convergence of Newton’s 
method may be interrupted if any intermediate step 
violates one of these conditions. This is a problem be- 
cause it is conceivable that the zero found by Newton’s 
method can correspond to a legitimate supporting dead- 
leg even if an iteration of Newton’s method corresponds 
to a senseless dead-leg. If the function or the deriva- 
tives can’t be evaluated during Newton’s Method, our 
only option is to truncate the feasibility check and re- 
port that the observation is not feasible. Additionally, 
we could find Newton’s Method failing to converge or 
converging after a large number of steps; we thus use a 
cutoff value to terminate search. 

Empirical Results 
We evaluated the ideas outlined above using several ex- 
periments. 

1. 

2. 

3. 

4. 

5. 

relaxing the feasibility check does not cost in terms 
of goodness of plans 
number of times newton’s method fails to find a good 
dead-leg when brute did 
number of newton’s violating a condition during iter- 
ation when a sensible dead leg could result (difficult 
to test all of these because of model changes) 
speedups due to Newton’s method for relaxed feasi- 
bility check 
impact of variations on Newton (cutoff for too long 
or too short/negative steps, error, etc.) 

Impact on Planning Model 
In this section we discuss the impact the above changes 
have on the underlying model used by the planner. Pre- 
viously, the planner had to perform an explicit search 
for dead-legs for observations. However, by using the 
above tools, we can now write a deterministic procedure 
that maps a permutation of observations and a takeoff 
time into a legal flight pian and a set of observations 
that were not performed. This simplifies the planning 
model a great deal, and makes it easier to consider al- 
gorithms like GAS, SA and SWO that operate directly 
on the permutation space. As we have said above, the 
continuous model is not perfect, but is good enough. 

It is possible to make too much of this. For instance, 
the brute force search of the original Forwardplanner 
would find the optimal shortest dead-leg if it could 
search over the full range of headings. Thus, choos- 
ing to view this component as a part of the planner 

flight duration simply changes one of the coordinates of the 
triangles. Thus, we could try replacing failed evaluations of 

with an Euler’s method approximation, but we didn’t. 
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instead of an incomplete procedural constraint is some- 
thing of a matter of taste. It is also straightforward to 
build GA, SA and SWO based algorithms on the same 
ccrnpcne&s as the FcxwardP!anner is bui!t, on. HQW- 
ever, the machinery described in this paper makes these 
options much more palatable (at least to me.) 

Complete search is now actually feasible if the num- 
ber of start times is not too high. Annecdotal evidence 
indicates that this may be true. 

Conclusions and Future Work 
In this paper we restricted the feasibility check to re- 
duce the number of IVPs and BVPs to solve. We can 
also relax the definition of feasibility and drop the check 
on the return to the landing airport altogether. The 
consequence of doing this is that a flight plan may vi- 
olate the fuel constraint and either need to be repaired 
or rejected completely. This may be justified because 
throughout most of the planning process this condition 
is trivially satisfied. However, the costs of repair and 
rejection sampling were deemed too high at this time. 
Relaxing the feasibility check by only ensuring that the 
observation is visible immediately after a dead-leg is a 
more dangerous proposition, because the frequency of 
high latitude observing almost ensures rejection sam- 
pling or repair will be needed. 

We should point out that we can define an f4 which 
accounts for the difference between the amount of fuel 
remaining to get the aircraft to the landing airport and 
the amount of fuel consumed by the leg home. Doing 
so would allow us to use the more restrictive defini- 
tion of feasibility while paying only minimal overhead 
in the number of BVPs and IVPs that we must solve. 
However, no method of doing so we have yet discovered 
avoids the pitfalls described previously. Letting f4 = 0 
if the landing airport is reachable creates many situa- 
tions where the first derivative of f4 is zero, which is 
bad. Forcing f4 = 0 only if exactly enough fuel is left 
to get to the landing airport is equally bad. 

The condition on dead-legs is ”locally optimal” in the 
sense that it is the best action to support one observa- 
tion. However, it may adversely affect the rest of the 
plan. Currently, we rely on repeated sampling to find 
good plans, but we know we only sample some of the 
possible plans,and may miss the best possible plan, Ex- 
tensions of the functions to zero may fki this but it’s 
hard to see what to do. 

We intuitively define criteria to minimize the dead- 
leg duration (e.g. dead-leg ends with us flying towards 
the object). We haven’t proved this is shortest even 
on spherical earth with no winds, but believe it’s cor- 
rect. Other criteria might be better given that we must 
account for winds and the like. 

make sure to reference boddy and johnson or 
boddy and krebsbach as appropriate. 
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